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1. Introduction

The present paper concerns operator-theoretic and function-theoretic properties of 
Bernstein functions and solves several notable problems which have been left open for 
some time.

Bernstein functions play a prominent role in probability theory and operator theory. 
One of their characterizations, also important for our purposes, says that a function 
ψ : (0, ∞) → [0, ∞) is Bernstein if and only if there exists a vaguely continuous semigroup 
of subprobability Borel measures (μt)t≥0 on [0, ∞) such that

e−tψ(λ) =
∞∫
0

e−λs μt(ds), λ > 0, (1.1)

for all t ≥ 0.
Let now (e−tA)t≥0 be a bounded C0-semigroup on a (complex) Banach space X with 

generator −A. The relation (1.1) suggests a way to define a new bounded C0-semigroup 
(e−tB)t≥0 on X in terms of (e−tA)t≥0 and a Bernstein function ψ as

e−tB =
∞∫
0

e−sA μt(ds), (1.2)

where (μt)t≥0 is a semigroup of measures given by (1.1). Following (1.1), it is natural 
to define ψ(A) := B. As it will be revealed in Subsection 3.3 below, such a definition of 
ψ(A) goes far beyond formal notation and it respects some rules for operator functions 
called functional calculus.

The semigroup (e−tψ(A))t≥0 is subordinated to the semigroup (e−tA)t≥0 via a sub-
ordinator (μt)t≥0. The basics of subordination theory was set up by Bochner [4] and 
Phillips [27]. This approach to constructing semigroups is motivated by probabilistic ap-
plications, e.g. by the study of Lévy processes, but it has also significant value for PDEs 
as well. As a textbook example one may mention a classical result of Yosida expressing 
(e−tAα)t≥0, α ∈ (0, 1), in terms of (e−tA)t≥0 as in (1.2), see e.g. [33]. The essential feature 
of this example is that C0-semigroups (e−tAα)t≥0 turn out to be necessarily holomor-
phic. This fact stimulated further research on relations between functional calculi and 
Bernstein functions, see e.g. [31] and [32]. Some of them are described below.

An easy consequence of (1.2) is that for a fixed Bernstein function ψ the mapping

M : −A �→ −ψ(A) (1.3)

preserves the class of generators of bounded C0-semigroups, and it is natural to ask 
whether there are any other important classes of semigroup generators stable under M. 
In particular, whether M preserves the class of holomorphic C0-semigroups. The question 
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was originally asked by Kishimoto and Robinson in [18, p. 63, Remark]. It appeared 
to be quite difficult and there have been very few general results in this direction so 
far.

A partial answer to the Kishimoto–Robinson question was obtained in [3] where the 
question was formulated in another form: whether M preserves the class of sectorially 
bounded holomorphic C0-semigroups? It was proved in [3, Theorem 7.2] that for any 
Bernstein function ψ the operator −ψ(A) generates a sectorially bounded holomorphic 
C0-semigroup of angle π/2, whenever −A does. Moreover, if −A generates a sectorially 
bounded holomorphic C0-semigroup of angle greater than π/4 then −ψ(A) is the gen-
erator of a sectorially bounded holomorphic C0-semigroup as well [3, Proposition 7.4]. 
However, in the latter case, the relations between the sectors of holomorphy of the two 
semigroups was not made precise in [3].

An affirmative answer to the Kishimoto–Robinson question for uniformly convex Ba-
nach spaces X was obtained in [24] using Kato–Pazy’s characterization of holomorphic 
C0-semigroups on uniformly convex spaces. In fact, a positive answer to the question in 
its full generality was also claimed in [21]. However, there seems to be an error in the 
arguments there (see Remark 4.8 for more on that), and moreover the permanence of 
sectors and thus the sectorial boundedness of semigroups has not been addressed in [21]
and [24].

Another class of problems related to M concerns Bernstein functions ψ yielding semi-
groups (e−tψ(A))t≥0 with better properties than the initial semigroup (e−tA)t≥0, as in 
Yosida’s example with ψ(λ) = λα, α ∈ (0, 1). In particular, it is of value to know when 
Bernstein functions transform generators of bounded C0-semigroups into generators of 
bounded holomorphic C0-semigroups. (Here the boundedness of the semigroup is as-
sumed only on the real half-line.) Bernstein functions having this property will further 
be called Carasso–Kato functions since the first general results on their structure are 
due to Carasso and Kato [6]. In particular, [6, Theorem 4] gives a criterion for a Bern-
stein function ψ to be Carasso–Kato in terms of the semigroup (μt)t≥0 corresponding 
to ψ and also a necessary condition for that property in terms of ψ itself. Note that 
while a characterization of a Carasso–Kato function ψ in terms of (μt)t≥0 exists, it can 
hardly be applied directly since it is, in general, highly nontrivial to construct (μt)t≥0
corresponding to ψ. Thus it is desirable to have direct characterizations of Carasso–Kato 
functions.

Certain sufficient conditions for a Bernstein function to be Carasso–Kato were ob-
tained in [6,9,22,23,30]. Interesting applications of Carasso–Kato functions can be found 
in [5,10,19]. We note also [7] where similar results were obtained in a discrete setting.

Our approach to the two problems on M mentioned above relies on certain extensions 
of the theory of Bernstein functions and its applications to operator norm estimates by 
means of functional calculi. Observe that the problems are comparatively simple if ψ is 
a complete Bernstein function [3]. Thus it is natural to try to use this partial answer in 
a more general setting of Bernstein functions. Our main idea relies on comparing a fixed 
Bernstein function ψ to a complete Bernstein function ϕ associated to ψ in a unique way. 
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It appears that the functions ψ and ϕ are intimately related and the behavior of ψ and its 
transforms match in a natural sense the behavior of ϕ and the corresponding transforms. 
So our aim is to show that for appropriate z the “resolvent” functions (z + ψ(·))−1 and 
(z+ϕ(·))−1 differ by a summand with good integrability (and other analytic) properties 
and then to recast this fact in terms of functional calculi. The latter step is not however 
direct and to perform it correctly and transparently we have to use an interplay between 
several well-known calculi. Apart from answering the questions from [18] and [3], another 
advantage of our approach is that we have a good control over fine properties of ψ(A), 
thus deriving the property of permanence of angles under the map M.

Our functional calculus approach leads, in particular, to the following statement which 
is one of the main results in this paper.

Theorem 1.1. Let −A be the generator of a bounded holomorphic C0-semigroup of angle 
θ ∈ (0, π/2] on a Banach space X. Then for every Bernstein function ψ the operator 
−ψ(A) generates a bounded holomorphic C0-semigroup of angle θ on X as well. More-
over, if −A generates a sectorially bounded holomorphic C0-semigroup of angle θ, then 
the same is true for −ψ(A).

The functional calculus ideas allow one also to characterize the Carasso–Kato property 
of ψ if ψ is a complete Bernstein function, i.e. if, in addition, ψ extends to the upper 
half-plane and maps it into itself. The characterization given in Corollary 5.8 below is a 
consequence of the following interesting result (see Theorem 5.7).

Theorem 1.2. Let ψ be a complete Bernstein function and let γ ∈ (0, π/2) be fixed. The 
following assertions are equivalent.

(i) The function ψ maps the right half-plane into the sector Σγ := {λ ∈ C : | arg λ| < γ}.
(ii) For each (complex) Banach space X and each generator −A of a bounded 

C0-semigroup on X, the operator −ψ(A) generates a sectorially bounded holomor-
phic C0-semigroup on X of angle π/2 − γ.

Moreover, we are able to strengthen essentially the results by Fujita from [9] removing 
in particular several assumptions made in [9].

Theorem 1.3. Let ψ be a Bernstein function. Suppose there exist θ ∈ (π/2, π) and r > 0
such that ψ admits a holomorphic extension to Σθ, and

0 < arg(ψ(λ)) < π/2 if 0 < arg λ < θ and |λ| ≥ r. (1.4)

If −A is the generator of a bounded C0-semigroup on a Banach space X, then the 
(bounded) C0-semigroup (e−tψ(A))t≥0 is holomorphic in Σθ0 with θ0 = π (1 − π/(2θ)).
2
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Let us describe the structure of our paper. The paper is organized as follows. Sec-
tion 2 contains basic information on Bernstein functions together with new notions and 
properties which are related to Bernstein functions and are crucial for the sequel. In Sec-
tion 3, we review functional calculi theory needed for the proofs of our main results and 
prove several auxiliary statements. Section 4 is devoted to the proof of one of our central 
results, Theorem 1.1. In Section 5, we study Carasso–Kato functions and complement 
and strengthen the corresponding statements by Carasso–Kato and Fujita. Finally, in 
Appendix A, we comment on alternative ways to prove Theorem 1.1.

We finish the introduction with fixing some notation for the rest of the paper. For a 
closed linear operator A on a complex Banach space X we denote by dom(A) and ρ(A)
the domain and the resolvent set of A, respectively. If a linear operator A is closable, 
then we denote its closure by A. The space of bounded linear operators on X is denoted 
by L(X).

The Laplace transform μ̂ of a Laplace transformable measure μ will be defined as 
usual as

μ̂(λ) :=
∞∫
0

e−λs μ(ds)

for appropriate λ. For a set S ⊂ C, its closure will be denoted by S.
Finally, we let

C+ := {λ ∈ C : Reλ > 0}, H+ := {λ ∈ C : Imλ > 0}, and R+ := [0,∞),

and for β ∈ (0, π], we denote

Σβ := {λ ∈ C : | arg λ| < β}, Σ+
β = {λ ∈ C : 0 < arg λ < β}, and Σ0 := (0,∞).

2. Bernstein functions

This section will lay a function-theoretic background for our functional calculi con-
siderations in the subsequent sections. We will present several properties of Bernstein 
functions useful for the sequel, and we will show how any Bernstein function can be 
approximated by a complete Bernstein function. Some of the properties of Bernstein 
functions proved below are certainly known, but we were not able to find the explicit 
references to them in the literature. As a general reference for the theory of Bernstein 
functions we mention [32].

We start by recalling one of possible definitions of a Bernstein function.

Definition 2.1. An infinitely differentiable function ψ : (0, ∞) �→ [0, ∞) is called Bernstein
if its derivative ψ′ is completely monotone, i.e.
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ψ′(λ) =
∞∫
0

e−λs ν(ds), λ > 0, (2.1)

for a Laplace transformable positive Borel measure ν on [0, ∞).

The class of Bernstein functions will be denoted by BF . The standard examples of 
Bernstein functions include 1 − e−λ, log(1 + λ), and λα, α ∈ [0, 1].

By [32, Theorem 3.2], ψ is Bernstein if and only if there exist a, b ≥ 0 and a positive 
Borel measure μ on (0, ∞) satisfying

∞∫
0+

s

1 + s
μ(ds) < ∞

such that

ψ(λ) = a + bλ +
∞∫

0+

(1 − e−λs)μ(ds), λ > 0, (2.2)

where we write the Lebesgue integral 
∫
(0,∞) as 

∫∞
0+. The formula (2.2) is called the Lévy–

Hintchine representation of ψ. The triple (a, b, μ) is defined uniquely and is called Lévy 
triple of ψ. We will then often write ψ ∼ (a, b, μ) meaning the Lévy–Hintchine repre-
sentation of ψ. Every Bernstein function extends analytically to C+ and continuously 
to C+. In the following Bernstein functions will be identified with their continuous ex-
tensions to C+. It is instructive to note that the set BF is closed under composition
[32, Corollary 3.8, (iii)]. There is a profound theory of Bernstein functions with many 
implications in functional analysis and probability theory. For a comprehensive account 
of that theory, we refer the reader to a recent book [32].

Geometric properties of Bernstein functions will be of particular importance for us, 
in particular, the fact that a Bernstein function preserves angular sectors symmetric 
with respect to R+, see e.g. [32, Proposition 3.6]. For later use, we state this result as a 
proposition below.

Proposition 2.2. Let ψ ∈ BF . Then for every ω ∈ (0, π/2],

ψ(Σω) ⊂ Σω. (2.3)

(In fact, (2.3) is a property of all holomorphic functions preserving C+ and (0, ∞), 
see e.g. [29, Theorem 2].)

We will also need several simple estimates of Bernstein functions given in the following 
proposition.
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Proposition 2.3. Let ψ ∈ BF .

(i) For all γ ≥ 0, β ∈ [0, π/2] such that γ + β < π,

|z + ψ(λ)| ≥ cos((γ + β)/2) (|z| + |ψ(λ)|), z ∈ Σγ , λ ∈ Σβ .

(ii) One has

Re(ψ(λ)) ≥ ψ(Reλ), λ ∈ C+.

(iii) There exists cψ > 0 such that

|ψ(λ)| ≤ cψ|λ|, λ ∈ C+, |λ| ≥ 1.

(iv) For all β ∈ [0, π/2),

|ψ(λ)| ≥ |λ|ψ′(1) cosβ, λ ∈ Σβ , |λ| ≤ 1.

Proof. To prove (i) it suffices to observe that

|z + λ| ≥ cos((β + γ)/2) (|z| + |λ|), z ∈ Σγ , λ ∈ Σβ . (2.4)

(The inequality above is evident if one considers the vectors z and −λ, notes that the 
angle between them is at most π−(β+γ), and drops perpendiculars from their endpoints 
onto the bisector of the angle.) Then (i) is a direct consequence of Proposition 2.2
and (2.4).

To obtain (ii), note that

Re(1 − e−λ) ≥ 1 − e− Re λ, λ ∈ C+,

and use the Lévy–Hintchine representation for ψ.
To prove (iii), observe that if ψ ∼ (a, b, μ) then (2.2) yields

|ψ(λ)| ≤ a + b|λ| + |λ|
1∫

0+

s μ(ds) + 2
∞∫
1

μ(ds), λ ∈ C+,

and (iii) follows.
Furthermore, since ψ(sλ) ≤ sψ(λ) for λ > 0 and s ≥ 1 (see [16, p. 205]), (ii) implies 

that for any β ∈ [0, π/2):

|ψ(λ)| ≥ ψ(|λ|) cosβ, λ ∈ Σβ . (2.5)
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Using

λψ′(λ) ≤ ψ(λ), λ > 0 (2.6)

(see [16, p. 204]), we have

ψ(|λ|) ≥ |λ|ψ′(|λ|) ≥ ψ′(1)|λ|, |λ| ∈ (0, 1]. (2.7)

Now (2.5) and (2.7) yield (iv). �
It is often convenient to restrict one’s attention to a subclass of Bernstein functions 

formed by complete Bernstein functions. It has a rich structure which makes it especially 
useful in applications. A Bernstein function ψ is said to be a complete Bernstein function
if the measure μ in its Lévy–Hintchine representation (2.2) has a completely monotone 
density with respect to Lebesgue measure. The set of all complete Bernstein functions 
will be denoted by CBF .

The class of complete Bernstein functions allows a number of characterizations. The 
ones relevant for our purposes are summarized in the following statement, see e.g. [32, 
Theorem 6.2].

Theorem 2.4. Let ϕ be a non-negative function on (0, ∞). Then the following conditions 
are equivalent.

(i) ϕ ∈ CBF .
(ii) There exists a (unique) Bernstein function ψ such that

ϕ(λ) = λ2ψ̂(λ), λ > 0. (2.8)

(iii) ϕ admits a holomorphic extension to H+ such that

Im(ϕ(λ)) ≥ 0 for all λ ∈ H+,

and such that the limit

ϕ(0+) = lim
λ→0+

ϕ(λ)

exists.
(iv) ϕ admits a holomorphic extension to C \ (−∞, 0] which is given by

ϕ(λ) = a + bλ +
∞∫

0+

λσ(ds)
λ + s

, (2.9)

where a, b ≥ 0 and σ is a positive Borel measure on (0, ∞) such that
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∞∫
0+

σ(ds)
1 + s

< ∞. (2.10)

The triple (a, b, σ) is defined uniquely and it is called the Stieltjes representation 
of ϕ.

Using Theorem 2.4, (iii) it is easy to see that, for instance, λα, α ∈ [0, 1], and log(1 +λ)
belong to CBF , while 1 − e−λ /∈ CBF . Another implication of this statement is that the 
composition of complete Bernstein functions is complete Bernstein. Note also that if 
ϕ ∈ CBF then for each θ ∈ [0, π) there exists Cθ > 0 such that |ϕ(λ)| ≤ Cθ|λ| for all 
λ ∈ Σθ with |λ| ≥ 1. This follows directly from (2.9).

The next statement sharpens Proposition 2.2 in a specific situation when complete 
Bernstein function has its range in a sector smaller than the right half-plane.

Proposition 2.5. Let ϕ ∈ CBF , ϕ 
≡ const, and suppose that

ϕ(C+) ⊂ Σγ (2.11)

for some γ ∈ (0, π/2). Let θ0 ∈ (π/2, π) be defined by

| cos θ0| = cot γ
1 + cot γ . (2.12)

Then for every θ ∈ [π/2, θ0] one has

ϕ(Σθ) ⊂ Σθ̃,

where θ̃ ∈ (0, π/2] is given by

cot θ̃ := 1 + cot γ
sin θ

(
cot γ

1 + cot γ − | cos θ|
)
. (2.13)

Proof. From (2.11) it follows that ϕ has the Stieltjes representation (a, 0, σ). Note that

ϕ(reiθ) = a +
∞∫

0+

r(r + t cos θ)σ(dt)
r2 + t2 + 2rt cos θ

+ i sin θ

∞∫
rt σ(dt)

r2 + t2 + 2rt cos θ , r > 0, |θ| < π, (2.14)

0+
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and Im(ϕ(reiθ)) > 0 for r > 0 and θ ∈ (0, π). Setting θ = π/2 in (2.14) and using (2.11), 
we infer that

a +
∞∫

0+

r2 σ(dt)
r2 + t2

≥ cot γ
∞∫

0+

rt σ(dt)
r2 + t2

, r > 0. (2.15)

Moreover, observe that for every θ ∈ [π/2, π), and all r, t > 0,

1
r2 + t2

≤ 1
r2 + t2 + 2rt cos θ ≤ 1

(1 − | cos θ|)(r2 + t2) . (2.16)

Hence, if θ ∈ [π/2, θ0], where θ0 is defined by (2.12), then by (2.14), (2.16) and (2.15)
we obtain

Re(ϕ(reiθ)) ≥ a +
∞∫

0+

r2 − rt| cos θ|
r2 + t2 + 2rt cos θ σ(dt)

≥ a +
∞∫

0+

r2 σ(dt)
r2 + t2

− | cos θ|
1 − | cos θ|

∞∫
0+

rt σ(dt)
r2 + t2

≥
(

cot γ − | cos θ|
1 − | cos θ|

) ∞∫
0+

rt

r2 + t2
σ(dt)

≥
(

cot γ − | cos θ|
1 − | cos θ|

)
(1 − | cos θ|)

∞∫
0+

rt σ(dt)
r2 + t2 + 2rt cos θ

= α(θ) Im(ϕ(reiθ)),

where α(θ) is given by the right hand side of (2.13). Note that

α(θ0) = 0, α(π/2) = cot γ and α(θ) > 0 if θ ∈ [π/2, θ0).

Moreover,

α′(θ) = cot γ| cos θ| − (1 + cot γ)
sin2 θ

≤ − 1
sin2 θ

< 0, θ ∈ [π/2, θ0],

hence the function α is positive and decreasing on [π/2, θ0]. Therefore, for all θ ∈ (π/2, θ0)
and θ′ ∈ (π/2, θ) we have

Re(ϕ(reiθ
′
)) ≥ α(θ′) Im(ϕ(reiθ

′
)) > α(θ) Im(ϕ(reiθ

′
)) = cot θ̃ Im(ϕ(reiθ

′
)).

On the other hand, if θ′ ∈ (0, π/2] then, by our assumption,
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Re(ϕ(reiθ
′
)) ≥ cot γ Im(ϕ(reiθ

′
)) > α(θ) Im(ϕ(reiθ

′
)) = cot θ̃ Im(ϕ(reiθ

′
)).

Thus,

ϕ(Σ+
θ ) ⊂ Σ+

θ̃
,

and, in view of ϕ(re−iθ) = ϕ(reiθ), the proposition follows. �
Let ψ ∈ BF . By Theorem 2.4, (ii), we have h(λ) := λ2ψ̂(λ) ∈ CBF . From Theorem 2.4, 

(iii), it follows that ϕ(λ) := λh(1/λ) ∈ CBF , and

ϕ(λ) = λ−1ψ̂(1/λ). (2.17)

We will say that ϕ ∈ CBF given by (2.17) is associated with ψ ∈ BF .
The notion of associated complete Bernstein function will be of primary importance 

in this paper, and we will first collect its several properties in Lemma 2.7 below. To this 
aim, the next auxiliary statement will be useful.

Lemma 2.6. Define

Δ(λ) := 1
1 + λ

− e−λ, λ ∈ C+. (2.18)

Then

|Δ(λ)| ≤ 4 |λ|2
(1 + Reλ)3 , λ ∈ C+. (2.19)

Proof. Observe that

Δ(λ) = λ2
1∫

0

e−λs(s− 1 + e−s) ds + λ2
∞∫
1

e−(λ+1)s ds, λ ∈ C+.

Since

s− 1 + e−s ≤ s2

2 , e−s ≤ 2
(s + 1)2 , s > 0,

we then have

|λ|−2|Δ(λ)| ≤ e

2

1∫
0

e−s(Re λ+1)s2 ds + e−1−Re λ

1 + Reλ ≤ 4
(1 + Reλ)3

for λ ∈ C+. �
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Lemma 2.7. Let ϕ ∈ CBF be associated with ψ ∈ BF and let ψ ∼ (a, b, μ). Then

a) ϕ admits the representation

ϕ(λ) = a + bλ +
∞∫

0+

λsμ(ds)
1 + λs

, λ ∈ C \ (−∞, 0];

b) one has

Re(ψ(λ)) ≥ ϕ(Reλ), λ ∈ C+;

c) one has

|ψ(λ) − ϕ(λ)| ≤ 2|λ|2|ϕ′′(Reλ)|, λ ∈ C+, (2.20)

and, moreover, for every β ∈ (0, π/2),

|ψ(λ) − ϕ(λ)| ≤ 4|λ|
cosβ ϕ′(Reλ), λ ∈ Σβ \ {0}; (2.21)

d) ψ is bounded on R+ if and only if ϕ is bounded on R+. Moreover, if either ψ or 
ϕ is bounded on R+, then for any β ∈ (0, π/2), the limits limλ→∞,λ∈Σβ

ψ(λ) and 
limλ→∞,λ∈Σβ

ϕ(λ) exist and are equal.

Proof. The assertion a) follows directly from (2.17) and (2.2). To prove b) we note that

1 − e−τ ≥ τ

1 + τ
, τ > 0.

Then, setting u = Reλ > 0, from Proposition 2.3, (ii) and a), it follows that

Re(ψ(λ)) ≥ ψ(u) = a + bu +
∞∫

0+

(1 − e−us)μ(ds)

≥ a + bu +
∞∫

0+

usμ(ds)
1 + us

= ϕ(u),

so that b) holds.
Let us now prove c). Observe that by Lemma 2.6 and a),

ψ(λ) − ϕ(λ) =
∞∫

Δ(λs)μ(ds), λ ∈ C+, (2.22)

0+
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where Δ is defined by (2.18). By a),

ϕ′′(λ) = −2
∞∫

0+

s2 μ(ds)
(1 + λs)3 , λ ∈ C+.

Then, using Lemma 2.6 and (2.22), it follows that

|ψ(λ) − ϕ(λ)| ≤
∞∫

0+

|Δ(λs)|μ(ds) ≤ 4|λ|2
∞∫

0+

s2 μ(ds)
(1 + us)3 = 2|λ|2|ϕ′′(u)|,

so that (2.20) holds.
To show (2.21), we note that ϕ ∈ CBF implies |sϕ′′(s)| ≤ 2ϕ′(s), s > 0, see [16, 

p. 205]. Using (2.20) and observing that cosβ|λ| ≤ Reλ, λ ∈ Σβ , we obtain (2.21).
To prove the first statement in d), it suffices to note that if either ψ or ϕ is bounded 

then b = 0 and the measure μ is bounded by Fatou’s theorem, see [32, Proposi-
tion 3.8, (v)]. Moreover, since |Δ(λ)| ≤ 2, λ ∈ C+, and

lim
λ→∞,λ∈Σβ

|Δ(λ)| = 0,

for any β ∈ (0, π/2), the equality (2.22) implies the second assertion in d) by the bounded 
convergence theorem. �

Now we are ready to prove the main result of this section providing an estimate for the 
difference of “resolvents” of a Bernstein function and the complete Bernstein function 
associated to it.

Theorem 2.8. Let ϕ ∈ CBF be associated with ψ ∈ BF . Let ω ∈ (π/2, π) and z ∈ Σω be 
fixed. If

r(λ; z) := 1
z + ψ(λ) − 1

z + ϕ(λ) , λ ∈ Σπ−ω,

then the function r(·; z) is holomorphic in Σπ−ω and for every β ∈ (0, π − ω):∫
∂Σβ

|r(λ; z)| |dλ||λ| ≤ 8
cos2 β cos2((ω + β)/2) |z| .

Proof. Note first that π− ω ∈ (0, π/2). Since by Proposition 2.2, the functions ψ and ϕ
preserve sectors, z +ψ and z +ϕ are not zero at each point from Σπ−ω. As ψ and ϕ are 
holomorphic in C+, the holomorphy of r(·, z) in Σπ−ω follows.

Let now β ∈ (0, π − ω) and 0 
= λ ∈ Σβ , z ∈ Σω. If K = cos((ω + β)/2), then by 
Proposition 2.3, (i), we have



168 A. Gomilko, Y. Tomilov / Advances in Mathematics 283 (2015) 155–194
K2|r(λ; z)| ≤ |ϕ(λ) − ψ(λ)|
(|z| + |ψ(λ)|)(|z| + |ϕ(λ)|) . (2.23)

Let us estimate the numerator and the denominator in the right hand side of (2.23)
separately. By (2.21),

|ϕ(λ) − ψ(λ)| ≤ 4|λ|
cosβϕ

′(Reλ),

and, moreover, Proposition 2.3, (ii) and Lemma 2.7, b) yield

(|z| + |ψ(λ)|)(|z| + |ϕ(λ)|) ≥ (|z| + Re(ψ(λ)))(|z| + Re(ϕ(λ)))

≥ (|z| + ϕ(Reλ))2.

Thus, if λ = te±iβ , t > 0, then

K2|r(λ; z)| ≤ 4t
cosβ

ϕ′(t cosβ)
(|z| + ϕ(t cosβ))2 . (2.24)

Hence,

K2
∫

∂Σβ

|r(λ; z)| |dλ||λ| ≤ 8
cosβ

∞∫
0

ϕ′(t cosβ) dt
(|z| + ϕ(t cosβ))2

≤ 8
cos2 β |z| ,

and Theorem 2.8 follows. �
Corollary 2.9. If r(λ; z) is defined as in Theorem 2.8, then for all z ∈ Σω and λ ∈ Σβ:

r(λ; z) = 1
2πi

∫
∂Σβ

r(μ; z) dμ
μ− λ

, (2.25)

and ∫
∂Σβ

λkr(λ; z)
(λ + 1)2 dλ = 0, k = 0, 1, (2.26)

where the contour ∂Σβ is oriented counterclockwise.

Proof. If ψ is unbounded on R+ then ϕ is unbounded on R+ as well by Lemma 2.7, d), 
so using (2.24) and (2.6) we obtain that

|r(λ; z)| = o(1) uniformly in λ ∈ Σβ , λ → ∞, (2.27)
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for any z ∈ Σω. If ψ is bounded on R+ then (2.27) follows directly from (2.23) and 
Lemma 2.7, d). Now (2.27), Theorem 2.8 and a standard argument based on Cauchy’s 
integral formula yield the representation (2.25). Finally, (2.26) is a consequence of (2.27)
and Theorem 2.8. �

We finish this section with formulating Bochner’s theorem which is at the heart of 
the notion of subordination. Recall that a family of positive Borel measures (μt)t≥0 on 
[0, ∞) is called a vaguely continuous convolution semigroup of (subprobability) measures 
if for all t, s ≥ 0,

μt([0,∞)) ≤ 1, μt+s = μt ∗ μs, and vague − lim
t→0+

μt = δ0,

where δ0 stands for the Dirac measure at zero, and ∗ denotes convolution. Note that 
necessarily μ0 = δ0. The following classical result due to Bochner can be found e.g. 
in [32, Theorem 5.2].

Theorem 2.10. The function ψ : (0, ∞) → [0, ∞) is Bernstein if and only if there exists 
a (unique) vaguely continuous convolution semigroup of subprobability measures (μt)t≥0
on [0, ∞) such that

μ̂t(λ) =
∞∫
0

e−λs μt(ds) = e−tψ(λ), λ > 0, (2.28)

for all t ≥ 0.

3. Preliminaries on functional calculi

In this section, we present basics on the functional calculi theory important for the se-
quel. We also prove several auxiliary results on continuity and compatibility of functional 
calculi.

3.1. Sectorial operators and holomorphic functional calculus

There are several ways to define a function of a sectorial operator. Probably the most 
well-known approach to that task is provided by the holomorphic functional calculus. We 
set up this calculus below omitting some crucial details and referring to [13, Sections 1–2]
and [20] for more information.

A closed, densely defined linear operator A on X is called sectorial of angle ω ∈ [0, π)
if C \ Σω ⊂ ρ(A) and

M(A,ω′) := sup{‖λ(λ−A)−1‖ : λ /∈ Σω′} < ∞

for all ω′ ∈ (ω, π). The set of sectorial operators of angle ω will be denoted by Sect(ω).
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It is well-known that A is sectorial if and only if (−∞, 0) ⊂ ρ(A) and

M(A) := sup
s>0

‖s(s + A)−1‖ < ∞, (3.1)

see e.g. [13, Proposition 2.1.1, a)].
For θ ∈ (0, π), let

H∞
0 (Σθ) :=

{
f ∈ O(Σθ) : |f(λ)| ≤ C min(|λ|α, |λ|−α) for some C,α > 0

}
,

where O(Σθ) denotes the algebra of all holomorphic functions in Σθ. Let also

B(Σθ) =
{
f ∈ O(Σθ) : |f(λ)| ≤ C max

(
|λ|α, |λ|−α

)
for some C,α > 0

}
.

Let A ∈ Sect(ω), and let ω < θ < π. For f ∈ H∞
0 (Σθ), define

Φ(f) = f(A) := 1
2πi

∫
∂Σω′

f(λ)(λ−A)−1 dλ, (3.2)

where ∂Σω′ is the downward oriented boundary of a sector Σω′, with ω′ ∈ (ω, θ). This 
definition is independent of ω′. The mapping Φ is said to be the holomorphic functional 
calculus for A.

The holomorphic functional calculus Φ can be extended to a larger class of holomor-
phic functions. Given f ∈ B(Σθ), let e ∈ H∞

0 (Σθ) be such that ef ∈ H∞
0 (Σθ) and the 

operator Φ(e) = e(A) is injective. Then we define

Φe(f) = f(A) := [e(A)]−1(ef)(A), (3.3)

with the natural domain. The mapping Φe is called the extended holomorphic functional 
calculus for A. Such a definition does not depend on the choice of the function e called 
regulariser, and, moreover, f(A) is a closed operator in X. Note that if A is injective 
and τ(λ) := λ

(1+λ)2 , then τn(A) is injective for every n ∈ N. In what follows, we will be 
sometimes considering injective A. In this case, one may put e = τn for large enough n.

Note that after an appropriate identification we may consider our extended calculus 
to be defined on the algebra

B[Σθ] :=
⋃

θ<γ<π

B(Σγ).

We will frequently use the following properties of the extended holomorphic func-
tional calculus. For their proofs see e.g. [13, Theorem 1.3.2], [13, Theorem 3.1.2] and [13, 
Proposition 3.1.4], respectively.
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Proposition 3.1. Let A ∈ Sect(ω).

(i) The sum and product rules: If f, g ∈ B[Σω], then

f(A) + g(A) ⊂ (f + g)(A) and f(A)g(A) ⊂ (fg)(A). (3.4)

Moreover, one has equality in the above relations if g(A) ∈ L(X).
(ii) If q > 0, and qω < π, then Aq ∈ Sect(qω).
(iii) The composition rule: Let q ∈ (0, 1), and f ∈ B[Σqβ ]. If A is injective, then f(Aq) =

(f ◦ λq)(A).

3.2. Hirsch functional calculus

We now define complete Bernstein functions of sectorial operators following Hirsch 
and review some of their basic properties needed in the sequel. Let A be a sectorial 
operator on X. The next definition was essentially given in [15, p. 255], see also [2].

Given f ∈ CBF with Stieltjes representation (a, b, σ) (see (2.9)), define
f0(A) : dom(A) → X by

f0(A)x = ax + bAx +
∞∫

0+

A(s + A)−1xσ(ds), x ∈ dom(A).

By (2.10) and (3.1), the integral above is absolutely convergent and f0(A)(1 + A)−1

is a bounded operator on X, extending (1 + A)−1f0(A). Hence f0(A) is closable as an 
operator on X. Put

f(A) = f0(A). (3.5)

The operator f(A) is called a complete Bernstein function of A. Note that by the above 
definition, dom(A) is core for f(A).

The mapping f �→ f(A) given by (3.5) is called the Hirsch functional calculus for A. 
Several properties of this calculus are described below. Their proofs can be found in e.g. 
[15, Théorème 1–3].

Theorem 3.2. Let A be a sectorial operator on X, and let f and g be complete Bernstein 
functions. Then the following statements hold.

(i) The operator f(A) is sectorial and

sup
s>0

‖s(s + f(A))−1‖ ≤ sup
s>0

‖s(s + A)−1‖.
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(ii) The composition rule: f(g(A)) = (f ◦ g)(A). In particular, for q ∈ (0, 1) define 
fq(λ) := f(λq) and g1/q(λ) := [g(λ)]1/q. Then

fq(A) = f(Aq), and [g1/q(A)]q = g(A) if g1/q ∈ CBF .

Note that, in contrast to Proposition 3.1, Theorem 3.2 does not require the injec-
tivity of A. However, Theorem 3.2 deals only with complete Bernstein functions, while 
Proposition 3.1 holds for a larger class of functions.

3.3. Hille–Phillips functional calculus

Let Mb(R+) be the Banach algebra of bounded Borel measures on R+. If

A1
+(C+) := {μ̂ : μ ∈ Mb(R+)}

then A1
+(C+) is a commutative Banach algebra with pointwise multiplication and with 

the norm

‖μ̂‖A1
+(C+) := ‖μ‖Mb(R+) = |μ|(R+),

where |μ|(R+) stands for the total variation of μ on R+.
Let (e−tA)t≥0 be a bounded C0-semigroup on X. Then the mapping Φ : A1

+(C+) �→
L(X) defined by

Φ(μ̂)x :=
∞∫
0

e−sAxμ(ds), x ∈ X,

is a continuous algebras homomorphism. The homomorphism Φ is called the Hille–
Phillips (HP-) functional calculus for A, and one sets

μ̂(A) = Φ(μ̂).

Basic properties of the Hille–Phillips functional calculus can be found in [14, Chap-
ter XV].

As in the case of holomorphic functional calculus, the HP-calculus for A can be 
extended to a larger class of functions. We will need a version of that extension procedure 
suitable to our purposes. Setting e(λ) := 1/(λ + 1) ∈ A1

+(C+), let A be the set of f
holomorphic in C+ such that ef ∈ A1

+(C+). Then A is an algebra. For f ∈ A define a 
closed linear operator f(A) similarly to (3.3):

Φe(f) = f(A) := (1 + A)[f(λ)(1 + λ)−1](A). (3.6)
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The mapping Φe given by (3.6) will be called the extended Hille–Phillips (HP-) calculus
for A. It is crucial to note that the extended HP-calculus satisfies the same sum and 
product rules as in Proposition 3.1, (i) up to replacement of the algebra B[Σω] by the 
algebra A.

Since, according to [11, Lemma 2.5], for any ψ ∈ BF one has ψ(λ)/(1 +λ) ∈ A1
+(C+), 

one can define a Bernstein function ψ of A by (3.6) in the extended HP-calculus, see [11]
for more details.

It was proved in [11, Corollary 2.6] that the formula (3.6) can be written in the follow-
ing more explicit and useful form which is an operator analogue of the Lévy–Hintchine 
representation of ψ.

Proposition 3.3. Let −A be the generator of a bounded C0-semigroup (e−tA)t≥0 on X, 
and let ψ ∈ BF , ψ ∼ (a, b, μ). If ψ(A) is defined by (3.6), then

ψ(A)x = ax + bAx +
∞∫

0+

(1 − e−sA)xμ(ds), x ∈ dom(A), (3.7)

where the integral is understood as a Bochner integral, and dom(A) is core for ψ(A).

In other approaches to defining ψ(A) (see e.g. [27,16], [32, Chapter 13]), the represen-
tation (3.7) of ψ(A) holds as well. Thus, (3.7) allows one to use the standard results on 
operator Bernstein functions in the framework of the extended HP-calculus. In particular, 
in view of [32, Proposition 13.1 and Theorem 13.6], for any ψ ∈ BF the operator −ψ(A)
defined by (3.6) generates a bounded C0-semigroup (e−tψ(A))t≥0 on X, and (e−tψ(A))t≥0
can be represented in terms of ψ and (e−tA)t≥0 as (2.28) suggests:

e−tψ(A) =
∞∫
0

e−sA μt(ds), t ≥ 0, (3.8)

where (μt)t≥0 is a vaguely continuous convolution semigroup of subprobability measures 
on [0, ∞) corresponding to ψ via (2.28).

The semigroup (e−tψ(A))t≥0 is called subordinate to the semigroup (e−tA)t≥0 with 
respect to the Bernstein function ψ. The relation (3.8) implies that (−∞, 0) ⊂ ρ(ψ(A))
and

sup
s>0

‖s(s + ψ(A))−1‖ ≤ sup
t>0

‖e−tψ(A)‖ ≤ sup
t>0

‖e−tA‖. (3.9)

From Proposition 3.3 it follows that the composition rule for Bernstein functions of semi-
group generators proved in [32, Theorem 13.23, (iii)] holds in the setting of the extended 
HP-calculus too: if ψ, ϕ ∈ BF and −A is the generator of a bounded C0-semigroup, 
then
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(ψ ◦ ϕ)(A) = ψ(ϕ(A)). (3.10)

This is a version of the composition rule in Theorem 3.2, (ii).
The next approximation result will often be useful.

Proposition 3.4. Let −A be the generator of a bounded C0-semigroup on X and let ψ ∈
BF .

(i) If ε > 0 then [ψ(· + ε) −ψ(·)](A) ∈ L(X) so that dom(ψ(A + ε)) = dom(ψ(A)) and

ψ(A + ε) = ψ(A) + [ψ(· + ε) − ψ(·)](A).

(ii) If x ∈ dom(A) and ε > 0, then

‖ψ(A + ε)x− ψ(A)x‖ ≤ M(ψ(ε) − ψ(0))‖x‖,

where M := supt≥0 ‖e−tA‖.
(iii) For all s > 0 and x ∈ X,

lim
ε→0+

‖(s + ψ(A + ε))−1x− (s + ψ(A))−1x‖ = 0.

Proof. To prove (i) and (ii), we note that if ψ is a Bernstein function with the Lévy–
Hintchine representation (a, b, μ) then for all ε > 0 and λ ∈ C+,

ψ(λ + ε) − ψ(λ) = bε +
∞∫

0+

e−λs(1 − e−εs)μ(ds).

Hence, ψ(· + ε) − ψ(·) ∈ A1
+(C+) and

‖ψ(· + ε) − ψ(·)‖A1
+

= ψ(ε) − ψ(0).

From here by the HP-calculus it follows that

‖[ψ(· + ε) − ψ(·)](A)‖ ≤ M(ψ(ε) − ψ(0)).

Moreover, since [ψ(· +ε) −ψ(·)](A) ∈ L(X), by the sum rule for the extended HP-calculus 
we obtain that dom(ψ(A + ε)) = dom(ψ(A)) and (i) holds. Since dom(A) ⊂ dom(ψ(A)), 
by Proposition 3.3, we have also

‖ψ(A + ε)x− ψ(A)x‖ ≤ M [ψ(ε) − ψ(0)]‖x‖

for all x ∈ dom(A), i.e. (ii) is true.



A. Gomilko, Y. Tomilov / Advances in Mathematics 283 (2015) 155–194 175
Furthermore, by the product rule for the extended HP-calculus, for all ε, s > 0 and 
x ∈ dom(A),

(s + ψ(A))−1(ψ(A + ε) − ψ(A))x = (ψ(A + ε) − ψ(A))(s + ψ(A))−1x.

Hence, using (ii) and the estimate (3.9), we obtain:

‖(s + ψ(A))−1x− (s + ψ(A + ε))−1x‖

= ‖(s + ψ(A))−1(s + ψ(A + ε))−1(ψ(A + ε) − ψ(A))x‖

≤ M3

s2 (ψ(ε) − ψ(0))‖x‖

→ 0, ε → 0+, x ∈ dom(A).

As dom(A) is dense in X, (iii) follows. �
3.4. Compatibility of functional calculi

In this subsection we show that in several cases of interest the three functional calculi 
introduced above are compatible in a natural sense. This will allow us to employ these 
calculi simultaneously thus using specific relations and properties of each of them.

The first result shows that the extended holomorphic functional calculus and the 
Hirsch functional calculus are compatible.

Proposition 3.5. Let ϕ ∈ CBF and let A be an injective sectorial operator on X. Then 
the operator ϕ(A) defined by the Hirsch calculus coincides with ϕ(A) defined via the 
extended holomorphic functional calculus. If ϕ(λ) = λq, q ∈ (0, 1), then the above holds 
for arbitrary sectorial A.

Proposition 3.5 was proved in [2, Theorem 4.12] for injective A. The fact that it is true 
for ϕ(λ) = λq, q ∈ (0, 1), and all sectorial A can be proved by repeating the argument 
from [2] with the regulariser 

(
λ/(1 + λ)2

)n
, n ∈ N, replaced by the regulariser (1 +λ)−1.

The next statement relates the extended Hille–Phillips calculus and the extended 
holomorphic calculus.

Proposition 3.6. Let ψ ∈ BF . Suppose that ψ admits a holomorphic extension ψ̃ to 
Σω for some ω ∈ (π/2, π) so that ψ̃ ∈ B(Σω). Let −A be the generator of a bounded 
C0-semigroup and let A be injective. Let ψ(A) be defined by the extended HP-calculus 
and ψ̃(A) be defined via the extended holomorphic functional calculus. Then

ψ̃(A) = ψ(A).
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Proof. Recall that there is n ∈ N such that τn(λ) =
(

λ
(λ+1)2

)n

is a regulariser for ψ̃
in the extended holomorphic functional calculus. Let τn(A) be given by that calculus. 
By [11, Lemma 2.5], τn is a regulariser for ψ in the extended HP-calculus too, and we 
denote by τnh (A) the function τn evaluated at A by means of the HP-calculus. Then, 
by [13, Proposition 3.3.2] on compatibility of the holomorphic and Hille–Phillips calculi, 
τnh (A) = τn(A). By the same [13, Proposition 3.3.2], we have (τnψ̃)(A) = (τnhψ)(A). 
Hence,

ψ̃(A) = (τn(A))−1(τnψ̃)(A) = (τnh (A))−1(τnhψ)(A) = ψ(A). �
Finally, the last result in this subsection yields compatibility of the extended 

HP-calculus and the Hirsch calculus for ψ ∈ BF of a special form.

Proposition 3.7. Let ψ ∈ BF . Suppose there exists θ ∈ (π/2, π) such that ψ admits a 
holomorphic extension ψ̃ to Σθ, and

ψ̃(Σ+
θ ) ⊂ Σ+

π/2. (3.11)

Let α := θ
π . Then the following hold.

(i) If ψ̃α(λ) := ψ̃(λα), λ ∈ C \ (−∞, 0], then ψ̃α ∈ CBF .
(ii) If −A is the generator of a bounded C0-semigroup, then A1/α ∈ Sect(π/(2α)) and

ψ(A) = ψ̃α(A1/α), (3.12)

where ψ(A) is defined by the extended HP-calculus, and ψ̃α(A1/α) is given by the 
Hirsch calculus.

Proof. Note that the function ψ̃α is positive on (0, ∞). Moreover, it extends continuously 
to zero and maps the upper half-plane H+ into itself. Hence, using Theorem 2.4, (iii), 
we infer that ψ̃α ∈ CBF , i.e. (i) holds.

First, let A be injective. Since ψ̃α ∈ CBF , one has ψ̃ ∈ B[Σθ], so that ψ̃α(A1/α) and 
ψ̃(A) are well defined in the extended holomorphic functional calculus. From Proposi-
tion 3.1, (iii) it follows that

ψ̃α(A1/α) = ψ̃(A).

Moreover, using Propositions 3.5 and 3.6, we infer that

ψα(A1/α) = ψ̃α(A1/α) and ψ(A) = ψ̃(A),

where ψα(A1/α) is given by the Hirsch calculus, and ψ(A) is defined by the extended 
HP-calculus, so that (3.12) holds.
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If A is not injective, then consider the family Aε := A + ε, ε > 0. By the above,

ψ(Aε) = ψ̃α(A1/α
ε ), ε > 0.

Due to Proposition 3.4, (ii),

lim
ε→0

ψ(Aε)x = ψ(A)x, x ∈ dom(A).

On the other hand, by [13, Proposition 3.1.3],

lim
ε→0

A1/α
ε x = A1/αx, x ∈ dom(A1/α),

hence, in view of [3, Proposition 5.16],

lim
ε→0

ψα(A1/α
ε )x = ψα(A1/α)x, x ∈ dom(A1/α).

So,

ψ(A)x = ψα(A1/α)x, x ∈ dom(A1/α).

Since dom(A1/α) is core for ψ(A) and ψα(A1/α) by Proposition 3.3 and [11, Lemma 2.1], 
respectively, we obtain (3.12). �
4. Main results: holomorphy and preservation of angles

Recall that a C0-semigroup (e−tA)t≥0 on X is said to be holomorphic if it extends 
holomorphically to a sector Σθ for some θ ∈ (0, π2 ] and the extension is bounded on 
Σθ′ ∩ {λ ∈ C : |λ| ≤ 1} for any θ′ ∈ (0, θ). In this case, we write −A ∈ H(θ). If the 
extension is bounded in Σ′

θ whenever 0 < θ′ < θ, then (e−tA)t≥0 is said to be a sectorially 
bounded holomorphic semigroup of angle θ, and we then write −A ∈ BH(θ). (The word 
“sectorially” in the definition above is usually omitted in the relevant literature, as, for 
instance, in [1], [8] or [3].) Note that (e−tA)t>0 may admit a holomorphic extension to 
Σθ as above without being sectorially bounded (as already one-dimensional examples 
show). A sectorially bounded holomorphic C0-semigroup can be characterized in terms 
of the sectoriality property for its generator. Recall that if θ ∈ (0, π/2] then −A ∈ BH(θ)
if and only if A ∈ Sect(π/2 − θ), see e.g. [1, Theorem 3.7.11].

Berg, Boyadzhiev and de Laubenfels proved in [3, Propositions 7.1 and 7.4] that if 
−A ∈ BH(θ) and θ ∈ (π/4, π/2], then for any ψ ∈ BF the operator −ψ(A) generates a 
sectorially bounded holomorphic C0-semigroup, and if −A ∈ BH(π/2), then −ψ(A) ∈
BH(π/2) too. They also asked in [3] whether the statement holds for θ from the whole of 
the interval (0, π/2]. In Theorem 4.5 below, we remove the restriction on θ and prove the 
result in full generality thus solving the problem posed in [3]. Moreover, we show that 
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(e−tψ(A))t≥0 is holomorphic in the holomorphy sector of (e−tA)t≥0. As byproduct, in 
Corollary 4.7, we also answer the question by Kishimoto–Robinson from [18] mentioned 
in Introduction. To this aim, we will first need to prove several results on functional 
calculi allowing one to apply Theorem 2.8.

First, we will need an estimate for the resolvent of ϕ(A). In [3, Theorem 6.1 and 
Remark 6.2] it was proved that if ϕ ∈ CBF then

A ∈ Sect(ω) =⇒ ϕ(A) ∈ Sect(ω), ω ∈ [0, π/2). (4.1)

The proof of (4.1) there was based on the fact that

ϕ ∈ CBF =⇒ [ϕ(λq)]1/q ∈ CBF , q ∈ (0, 1), (4.2)

and on a result similar to Theorem 3.2. In the statement below, we extend (4.1) to the 
whole class of sectorial operators.

Theorem 4.1. Let A ∈ Sect(ω), ω ∈ [0, π). If ϕ ∈ CBF , then ϕ(A) ∈ Sect(ω) too.

Proof. In this proof, we will combine the (extended) holomorphic functional calculus 
and the Hirsch functional calculus. This is possible due to compatibility of the calculi 
given by Proposition 3.5.

Assume first that ω > 0. Let q ∈ (1, π/ω). Recall first that by Theorem 3.2, (i), the 
operator ϕ(A) is sectorial. For λ ∈ C \ (−∞, 0], define g1/q(λ) := λ1/q and gq(λ) := λq. 
Note that ϕq := gq ◦ϕ ◦g1/q ∈ CBF (see [32, Corollary 7.15]). Moreover, ϕ ◦g1/q ∈ CBF , 
and Aq is sectorial in view of Proposition 3.1, (ii). Now we use the Hirsch functional cal-
culus. By Theorem 3.2, (i) the operator [ϕ ◦g1/q](Aq) is sectorial, so by Theorem 3.2, (ii) 
we infer that

[ϕq(Aq)]1/q = [(gq ◦ ϕ ◦ g1/q)(Aq)]1/q = [ϕ ◦ g1/q](Aq).

Furthermore, observe that (Aq)1/q = A by the (extended) holomorphic functional cal-
culus. Hence, taking into account Proposition 3.5 for power functions and using Theo-
rem 3.2, (ii), we conclude that

[ϕ ◦ g1/q](Aq) = ϕ((Aq)1/q) = ϕ(A).

Therefore

ϕ(A) = [ϕq(Aq)]1/q, (4.3)

and, due to Proposition 3.1, (ii), we obtain that

ϕ(A) ∈ Sect(π/q). (4.4)

Since q ∈ (1, π/ω) is arbitrary, it follows that ϕ(A) ∈ Sect(ω).



A. Gomilko, Y. Tomilov / Advances in Mathematics 283 (2015) 155–194 179
If ω = 0 then, since Sect(0) = ∩ω∈(0,π) Sect(ω), the above arguments yield ϕ(A) ∈
Sect(0). �

Let now −A ∈ BH(θ) for some θ ∈ (0, π/2] so that for every ω ∈ (0, π/2 + θ),

‖(λ + A)−1‖ ≤ M(A,ω)
|λ| , λ ∈ Σω. (4.5)

Let ω ∈ (π/2, π/2 +θ) be fixed. Let also ψ be a Bernstein function, ϕ be the complete 
Bernstein function associated to ψ, and the function r be defined as in Theorem 2.8.

Define r(A, ·) : Σω → L(X) and F (A, ·) : Σω → L(X) by

r(A; z) := 1
2πi

∫
∂Σβ

r(λ; z)(λ−A)−1 dλ, (4.6)

and

F (A; z) := 1
2πi

∫
∂Σβ

λr(λ; z)
(λ + 1)2 (λ−A)−1 dλ, (4.7)

where β ∈ (π/2 − θ, π − ω) is arbitrary and Σβ is oriented counterclockwise. In view of 
Theorem 2.8 and Cauchy’s theorem, the functions r and F are well-defined.

We continue by providing sectoriality estimates for r in appropriate sectors and ex-
pressing F via r.

Proposition 4.2. Let −A ∈ BH(θ) for some θ ∈ (0, π/2] so that (4.5) holds. Then for 
every ω ∈ (π/2, π/2 +θ), r(A, ·) is holomorphic in Σω and for every β ∈ (π/2 −θ, π−ω),

‖r(A; z)‖ ≤ 4M(A, π − β)
π cos2 β cos2((ω + β)/2) |z| , z ∈ Σω.

Proof. The estimate for r(A; z) follows from (4.6), Theorem 2.8 and (4.5). The holomor-
phy of r(A, ·) in Σω is a direct consequence of Fubini’s and Morera’s theorems. �
Lemma 4.3. Let r(A; z) and F (A; z) be defined by (4.6) and (4.7), respectively. Then for 
every ω ∈ (π/2, π/2 + θ),

F (A; z) = A(A + 1)−2r(A; z), z ∈ Σω.

Proof. Note that for every λ ∈ C \ (−∞, 0),

λ

(λ + 1)2 −A(A + 1)−2 = [λ(A + 1)2 − (λ + 1)2A] (A + 1)−2

(λ + 1)2

= (λA− 1)(A− λ) (A + 1)−2

2 .
(λ + 1)
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Therefore, by (2.26), for every x ∈ X one has

F (A; z)x−A(A + 1)−2r(A; z)x

= 1
2πi

∫
∂Σβ

r(λ; z)
[

λ

(1 + λ)2 −A(A + 1)−2
]

(λ−A)−1x dλ

= − 1
2πi

∫
∂Σβ

r(λ; z)
(λ + 1)2 (λA− 1)(A + 1)−2x dλ

= 1
2πi

∫
∂Σβ

r(λ; z)
(λ + 1)2 (A + 1)−2x dλ

− 1
2πi

∫
∂Σβ

λr(λ; z)
(λ + 1)2A(A + 1)−2x dλ

= 0. �
The following statement relating the resolvents of ψ(A) and ϕ(A) will be basic for 

proving the main result of this paper, Theorem 4.5. It shows that the resolvents do 
not differ much as far their behavior at infinity is concerned. Note that if ψ ∈ BF and 
−A ∈ BH(θ), θ ∈ (0, π/2], then ψ(A) given by the extended HP-calculus coincide with 
ψ(A) defined by the extended holomorphic calculus. The proof of this fact is the same 
as that of Proposition 3.6.

Proposition 4.4. Let −A ∈ BH(θ) for some θ ∈ (0, π/2]. Then for every ω ∈ (π/2,
π/2 + θ),

(z + ψ(A))−1 = (z + ϕ(A))−1 + r(A; z), z ∈ Σω. (4.8)

Proof. Suppose first that A has dense range. Then the operators (z + ψ)−1(A) and 
(z+ϕ)−1(A) are well-defined for z > 0 via the (extended) holomorphic functional calculus 
with the regulariser τ(λ) = λ/(1 + λ)2. On the other hand, since −ψ(A) and −ϕ(A)
generate bounded C0-semigroups, we have that

(z + ψ(A))−1 ∈ L(X) and (z + ϕ(A))−1 ∈ L(X), z > 0.

Moreover, by [13, Theorem 1.3.2, f )], if z > 0, then

(z + ψ(A))−1 = (z + ψ)−1(A) and (z + ϕ(A))−1 = (z + ϕ)−1(A).

Hence, using the sum rule for the (extended) holomorphic functional calculus,

(z + ψ(A))−1 − (z + ϕ(A))−1 = [(z + ψ)−1 − (z + ϕ)−1](A).
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Furthermore, using the product rule for this calculus,

(z + ψ(A))−1 − (z + ϕ(A))−1 = [τ(A)]−1[((z + ψ)−1 − (z + ϕ)−1)τ ](A)

= [A(A + 1)−2]−1[r(·; z)τ ](A)

= [A(A + 1)−2]−1F (A; z).

From the latter relation and Lemma 4.3 it follows that

(z + ψ(A))−1 = (z + ϕ(A))−1 + r(A; z), z > 0. (4.9)

To obtain (4.9) in case when the range of A may not be dense, we consider the 
approximation of A by the operators Aε with dense range given by

Aε := A + ε ∈ BH(θ), ε > 0.

By (4.9) we have

(z + ψ(Aε))−1 − (z + ϕ(Aε))−1 = r(Aε; z), z > 0, ε > 0. (4.10)

Next we use the extended HP-calculus. By applying Proposition 3.4, (iii) to the Bern-
stein functions ψ and ϕ, we infer that

lim
ε→0

[(z + ψ(Aε))−1 − (z + ϕ(Aε))−1] = (z + ψ(A))−1 − (z + ϕ(A))−1,

in the strong operator topology. On the other hand, since

|λ + ε| ≥ cos(β/2) (|λ| + ε), λ ∈ ∂Σβ , ε > 0

(see (2.4)), for λ ∈ ∂Σβ one has

‖(A− λ)−1 − (A− λ− ε)−1‖ ≤ εM2(A, π − β)
|λ(λ + ε)| ≤ εM2(A, π − β)

cos(β/2) |λ|(|λ| + ε) .

So, by (4.6), Theorem 2.8 and the bounded convergence theorem, we obtain that

‖r(A; z) − r(Aε; z)‖ ≤ 1
2π

∫
∂Σβ

|r(λ; z)|‖(A− λ)−1 − (A− λ− ε)−1‖ |dλ|

≤ εM2(A, π − β)
2π

∫
∂Σβ

|r(λ; z)|
|λ|(|λ| + ε) |dλ|

→ 0, ε → 0.

Letting ε → 0 in (4.10), the equality (4.9) follows.
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Thus, (· +ψ(A))−1 satisfies (4.9) and extends holomorphically to Σω as both r(·, A) and 
(· +ϕ(A))−1 have the latter property by Proposition 4.2 and Theorem 4.1, respectively. 
Then, [1, Appendix B, Proposition B5] implies that Σω ⊂ ρ(−ψ(A)) and the extension 
is given by (· + ψ(A))−1. This yields (4.8) for all z ∈ Σω. �

Now we are ready to prove the main results of this paper. The first of them shows 
that Bernstein functions leave the class of generators of sectorially bounded holomorphic 
semigroups on a Banach space invariant and, moreover, preserve the holomorphy sectors.

Theorem 4.5. Let −A ∈ BH(θ) for some θ ∈ (0, π/2]. Then for every ψ ∈ BF one has 
−ψ(A) ∈ BH(θ).

Proof. Let ϕ ∈ CBF be the function associated with ψ ∈ BF . By Theorem 4.1, if 
−A ∈ BH(θ) then −ϕ(A) ∈ BH(θ). Taking into account Propositions 4.2 and 4.4, we 
infer that ψ(A) ∈ Sect(π − ω) for every ω ∈ (π/2, π/2 + θ). Choosing ω arbitrarily close 
to π/2 + θ we conclude that ψ(A) ∈ Sect(π/2 − θ). Hence, −ψ(A) ∈ BH(θ). �

Theorem 4.5 has a version saying that Bernstein functions preserve the class of 
bounded (but not necessarily sectorially bounded) holomorphic C0-semigroups. This 
version is an immediate consequence of Theorem 4.5 and the following lemma.

Lemma 4.6. Let −A be the generator of a bounded C0-semigroup on X and let ψ ∈ BF . 
Suppose there exists d ≥ 0 such that −ψ(A + d) ∈ H(θ) for some θ ∈ (0, π/2]. Then 
−ψ(A) ∈ H(θ).

Proof. We use the extended HP-calculus. By Proposition 3.4, (i), we have

ψ(A + d) = ψ(A) + [ψ(· + d) − ψ(·)](A) = ψ(A) + Bd,

where Bd ∈ L(X). By the product rule for the (extended) HP-calculus we have

(ψ(A + d) + s)−1(Bd + s)−1 = (Bd + s)−1(ψ(A + d) + s)−1

for sufficiently large s > 0. Then by [25, Section A-I.3.8, p. 24] the C0-semigroups 
(e−tψ(A+d))t≥0 and (e−tBd)t≥0 commute. Taking into account that dom(ψ(A)) =
dom(ψ(A + d)) by Proposition 3.4, (ii) and using [8, Subsection II.2.7], we conclude 
that

e−tψ(A) = e−tψ(A+d)etBd , t ≥ 0.

Since (etBd)t≥0 extends to an entire function, the statement of the lemma follows. �
Corollary 4.7. Let −A be the generator of a bounded C0-semigroup on X such that 
−A ∈ H(θ) for some θ ∈ (0, π/2]. Then for every ψ ∈ BF one has −ψ(A) ∈ H(θ).
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Proof. Observe that if (e−tA)t≥0 is a bounded C0-semigroup admitting a holomorphic 
extension to Σθ, θ ∈ (0, π/2], then by e.g. [1, Proposition 3.7.2 b)] we infer that for 
fixed θ′ ∈ (0, θ) and big enough d > 0 the operator −(d + A) generates a C0-semigroup 
(e−t(d+A))t≥0 which is holomorphic and sectorially bounded in Σθ′ . Therefore, by The-
orem 4.5 the C0-semigroup (e−tψ(d+A))t≥0 is also holomorphic and sectorially bounded 
in Σθ′ . By Lemma 4.6, −ψ(A) generates a bounded C0-semigroup which extends holo-
morphically to Σθ′ . Since the choice of θ′ ∈ (0, θ) is arbitrary, the corollary follows. �
Remark 4.8. It was claimed in [21, Theorem 7.1] that if −A is the generator of a bounded 
C0-semigroup on X then −A ∈ ∪θ∈(0,π/2]H(θ) implies the same property for −ψ(A). 
Unfortunately, the proof of this fact in [21] seems to contain a mistake. Specifically, in 
the notation of [21], the proof at its final stage relies on the boundedness of the operator 
ψ(A)gt(A) which was not proved in [21]. Nonetheless, the holomorphy of (e−tψ(A))t≥0 was 
proved in [24, Theorem 13] for uniformly convex X by means of the Kato–Pazy criterion. 
(Concerning the Kato–Pazy criterion see [17] and [26, Corollaries 2.5.7 and 2.5.8].)

Let −A be the generator of a bounded C0-semigroup, and let the range ran(A) of 
A be dense (so that A is injective by the mean ergodic theorem, see e.g. [1, p. 261]). 
Consider so-called Stieltjes functions f : (0, ∞) → (0, ∞) which can be defined by the 
property that 1/f ∈ CBF . Note that for Stieltjes f the operator −f(A) does not, in 
general, generate a C0-semigroup. For example, if f(z) = 1/z then f(A) = A−1, and a 
counterexample can be found in [12]. On the other hand, for generators of sectorially 
bounded holomorphic C0-semigroups the situation is different, as we prove in Corol-
lary 4.10 below.

Let us first introduce the notion of potential and define several operators related to 
it. Recall (see e.g. [32, Definition 5.24]) that a function f : (0, ∞) �→ (0, ∞) is said to 
be potential, if there exists ψ ∈ BF such that f = 1/ψ. The set of all potentials will 
be denoted by P. Note that P consists precisely of completely monotone functions f
satisfying 1/f ∈ BF .

Assume that A ∈ Sect(ω) for some ω ∈ [0, π/2), and, in addition, that ran(A) is dense. 
Let f be a potential so that f = 1/ψ for some ψ ∈ BF . Then from the estimates of 
Bernstein functions in Proposition 2.3, (ii), (iii) and (iv) it follows that ψ(A) and f(A)
can be defined by the extended holomorphic functional calculus using the regulariser eε
given by

eε(λ) :=
(

λ

(ε + λ)(1 + ελ)

)2

, (4.11)

where ε > 0 is fixed. Therefore, by [13, Proposition 1.2.2, d], we have

f(A) = [ψ(A)]−1. (4.12)
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Moreover, for every h of the form h = ψ + f , where ψ ∈ BF and f ∈ P, the (closed) 
operator h(A) can also be defined by the extended holomorphic calculus via the regu-
lariser eε, ε > 0. Observe that from the product rule in Proposition 3.1, (i) it follows 
that ran(eε(A)) ⊂ dom(h(A)), ε > 0. Since ran(eε(A)) = ran(A2) ∩ dom(A2), ε > 0, and 
the latter set is dense in X (see [20, Proposition 9.4, b) and c)]), the operator h(A) is 
densely defined.

Lemma 4.9. Assume that h = ψ + f, ψ ∈ BF , f ∈ P, and A ∈ Sect(ω), ω ∈ [0, π/2). If A
has dense range then

ψ(A) + f(A) = h(A).

Proof. If eε, ε > 0, is given by (4.11), then

lim
ε→0

eε(A)x = x, x ∈ X,

and the statement follows from [13, Proposition 1.2.2, e)]. �
Now we can extend the class of admissible ψ in Theorem 4.5.

Corollary 4.10. Suppose that −A ∈ BH(θ) for some θ ∈ (0, π/2] and the range of A is 
dense. If h = ψ + f , where ψ ∈ BF and f ∈ P, then −h(A) ∈ BH(θ).

Proof. First note that by Theorem 4.5 we have −ψ(A) ∈ BH(θ). Moreover, by [13, 
Proposition 2.1.1, b)], inverses of generators of sectorially bounded holomorphic 
C0-semigroups of angle θ generate semigroups of the same kind. Thus, by Theorem 4.5
and (4.12), −f(A) ∈ BH(θ) as well.

From the product rule for the (extended) holomorphic functional calculus it follows 
that for every s > 0:

[(s + ψ(·))−1(s + f(·))−1](A) = (s + ψ(A))−1(s + f(A))−1

= (s + f(A))−1(s + ψ(A))−1.

Hence, as in the proof of Lemma 4.6, the semigroups (e−tψ(A))t≥0 and (e−tf(A))t≥0

commute. Then, by [8, Subsection II.2.7], −ψ(A) − f(A) generates the C0-semigroup 
(e−tψ(A)e−tf(A))t≥0, and therefore −ψ(A) − f(A) ∈ BH(θ). From this, by Lemma 4.9, 
it follows that −h(A) ∈ BH(θ). �

Note that in the particular case when ψ ∈ CBF and f is a Stieltjes function (i.e. 
1/f ∈ CBF), Corollary 4.10 was proved in [3, Theorem 6.4].
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5. Carasso–Kato functions

Let us first recall some notions and results from [6]. To this aim and for formulating 
our results in this section the next definition will be helpful.

A Bernstein function ψ is said to be Carasso–Kato if for every Banach space X, 
and every bounded C0-semigroup (e−tA)t≥0 on X, the C0-semigroup (e−tψ(A))t≥0 is 
holomorphic.

Following [6], denote the set of vaguely continuous convolution semigroups of subprob-
ability Borel measures on R+ by T . Let I stand for the set of (μt)t≥0 ∈ T such that the 
Bernstein function ψ given by (μt)t≥0 via Bochner’s formula (2.28) is Carasso–Kato. Let 
us finally denote by T1 ⊂ T the set of functions R+ � t �→ μt such that μt is continuously 
differentiable in Mb(R+) for t > 0, with ‖μt

′‖Mb(R+) = O(t−1) as t → 0+.
Recall that by [6, Theorem 4] one has I = T1. Moreover, it was noted in [6, p. 872]

that if ψ ∈ BF is given by (μt)t≥0 ∈ I, then

ψ(C+) ⊂ Σγ − β := {λ ∈ C : λ + β ∈ Σγ} (5.1)

for some γ ∈ (0, π/2) and β ≥ 0. Hence, as shown in [6, p. 873], there exists K > 0 such 
that

|ψ(λ)| ≤ K|λ|2γ/π, |λ| ≥ 1, λ ∈ C+.

While [6] describes Carasso–Kato functions ψ in terms of the families of measures (μt)t≥0
corresponding to ψ via (2.28), the results of [6] are not so easy to apply since one is usually 
given ψ rather than the corresponding family (μt)t≥0. The aim of this section is to single 
out substantial classes of Carasso–Kato functions ψ in terms of geometric properties of 
ψ themselves.

Note first that if ψ ∈ BF and ϕ is Carasso–Kato then clearly ϕ ◦ ψ is Carasso–Kato. 
Corollary 4.7 and the composition rule (3.10) yield immediately that ψ ◦ ϕ is Carasso–
Kato as well, and we separate this fact as the following corollary.

Corollary 5.1. Let ψ ∈ BF and let ϕ be a Carasso–Kato function. Then ψ ◦ ϕ is also 
Carasso–Kato.

Remark 5.2. Let ψ, ϕ ∈ BF , so that

e−tψ(λ) =
∞∫
0

e−λs μt(ds), e−tϕ(λ) =
∞∫
0

e−λs νt(ds), λ ≥ 0, t ≥ 0,

for some (μt)t≥0 and (νt)t≥0 from T . Then, by [32, Theorem 5.27 and Lemma 13.3],

e−t(ψ◦ϕ)(λ) =
∞∫
e−λτ ηt(dτ),
0
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where (ηt)t≥0 ∈ T is given by a convolution formula

ηt(dτ) =
∞∫
0

νs(dτ)μt(ds), (5.2)

where the integral converges in the vague topology. Thus, if ψ ∈ BF and ϕ is Carasso–
Kato then, in view of I = T1, we infer that (ηt)t≥0 ∈ T1.

Example 5.3. a) It was proved in [6, Example 1] that the function ϕ(λ) = log(1 + λ) is 
Carasso–Kato. Note that

e−t log(1+λ) = (1 + λ)−t =
∞∫
0

e−sλe−s s
t−1

Γ(t) ds, t > 0.

Hence, by means of (2.28), the function ϕ corresponds to the semigroup of measures 
(νt)t≥0, where

νt(ds) = st−1e−s

Γ(t) ds, t > 0.

From Corollary 5.1 it follows that for every (μt)t≥0 ∈ T , the semigroup (ηt)t≥0 given by

ηt(dτ) =

⎛⎝ ∞∫
0

τ s−1

Γ(s) μt(ds)

⎞⎠ e−τ dτ, t > 0,

belongs to T1.
b) Consider the complete Bernstein function ϕ(λ) =

√
λ. Observe that

e−tλ1/2
= t

2
√
π

∞∫
0

e−λs e
−t2/4s

s3/2 ds, t > 0,

and it easy to check that ϕ is Carasso–Kato, see e.g. [6, Example 2]. By Corollary 5.1, 
for each (μt)t≥0 ∈ T one has (ηt)t≥0 ∈ T1, where

ηt(dτ) = 1
2
√
π

⎛⎝ ∞∫
0

se−s2/4τμt(ds)

⎞⎠ dτ

τ3/2 , t > 0.

We proceed with several new conditions for a function to be Carasso–Kato. Roughly, 
they say that the function is Carasso–Kato if it shrinks an angular sector to a smaller 
one.

The first statement provides a geometric condition for a stronger version of the 
Carasso–Kato property. Recall that Σ+

β = {λ ∈ C : 0 < arg λ < β}.
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Theorem 5.4. Let ψ ∈ BF . Suppose there exist θ1 ∈ (0, π) and θ2 ∈ (π/2, π), θ1 < θ2, 
such that ψ admits a holomorphic extension ψ̃ to Σθ2 and

ψ̃(Σ+
θ2

) ⊂ Σ+
θ1
. (5.3)

Then ψ is a Carasso–Kato function. Moreover, for any generator −A of a bounded 
C0-semigroup on X, one has

−ψ(A) ∈ BH(θ), θ = π

2

(
1 − θ1

θ2

)
.

Proof. Let

α := θ2

π
∈ (1/2, 1) and β := π

θ1
> 1.

For λ ∈ C \ (−∞, 0], define gα(λ) := λα and gβ(λ) := λβ . Then, by (5.3), both functions 
ψ̃◦gα and gβ ◦ ψ̃◦gα map the upper half-plane H+ into itself. Hence, using Theorem 2.4, 
(iii), we conclude that

ψ̃ ◦ gα ∈ CBF and gβ ◦ ψ̃ ◦ gα ∈ CBF . (5.4)

Since π/(2α) < π, Proposition 3.1, (ii) yields A1/α ∈ Sect(π/(2α)). Thus, in view 
of (5.4), the composition rule in Theorem 3.2, (ii) and Theorem 4.1 imply that

[ψ̃ ◦ gα](A1/α) =
(
[gβ ◦ ψ̃ ◦ gα](A1/α)

)1/β
∈ Sect(π/(2αβ)), (5.5)

where the operators are defined by the Hirsch functional calculus.
Moreover, by Proposition 3.7, (ii),

ψ(A) = (ψ̃ ◦ gα)(A1/α).

Hence, using (5.5), we obtain that ψ(A) ∈ Sect( π
2αβ ). Since αβ = θ2

θ1
, the required 

statement follows. �
Theorem 5.4 yields the following assertion providing a geometric condition for the 

Carasso–Kato property. The assertion is, in fact, Theorem 1.3 mentioned in Introduction.

Corollary 5.5. Let ψ ∈ BF . Suppose there exist θ ∈ (π/2, π) and r > 0 such that ψ
admits a holomorphic extension ψ̃ to Σθ, and

ψ̃(λ) ∈ Σ+
π/2 for λ ∈ Σ+

θ , |λ| ≥ r.

Then ψ is a Carasso–Kato function. Moreover, for any generator −A of a bounded 
C0-semigroup on X, one has −ψ(A) ∈ H(π (1 − π )).
2 2θ
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Proof. From our assumptions it follows that there exists d > 0 such that the Bernstein 
function ψd given by

ψd(λ) := ψ(λ + d), λ > 0,

admits a holomorphic extension ψ̃d to Σθ, and

ψ̃d(λ) ∈ Σ+
π/2 for λ ∈ Σ+

θ .

Therefore, by Theorem 5.4 with θ2 = θ and θ1 = π/2, if −A is the generator of a bounded 
C0-semigroup then −ψd(A) = −ψ(A + d) ∈ BH(θ0), where

θ0 = π

2

(
1 − π

2θ

)
∈
(
0, π2

)
.

Then, by Lemma 4.6, we conclude that −ψ(A) generates a bounded C0-semigroup pos-
sessing a holomorphic extension to Σθ0 . �

Note that Corollary 5.5 generalizes and improves Fujita’s conditions from [9, p. 337 
and Lemma 2] ensuring that a Bernstein function ψ is Carasso–Kato. In particular, 
Corollary 5.5 shows that one can omit Fujita’s condition (A3) and his assumption that 
ψ is regularly varying. Indeed, Fujita’s assumptions (A1) and (A2) imply that there exist 
α ∈ (0, 1) and θα ∈ (π/2, π/(2α)) such that for a sufficiently large r > 0 the function ψ
has a holomorphic extension ψ̃ to Σ+

θα
, and

ψ̃(λ) ∈ Σ+
αθα

⊂ Σ+
π/2 if λ ∈ Σ+

θα
, |λ| ≥ r,

so that the assumptions of Corollary 5.5 are satisfied.
Let us illustrate Corollary 5.5 by the next example.

Example 5.6. To simplify our notation in this example we identify functions with their 
holomorphic extensions.

Consider the Bernstein function f(λ) = λ + 1 − e−λ, λ > 0. If λ = reiβ , β ∈ [0, π/2], 
then

Im(f(λ)) = r sin β + e−r cos β sin(r sin β) ≥ (1 − e−r cos β)r sin β ≥ 0.

Let α ∈ (1/2, 1) be fixed. Then the function

fα(λ) := f(λα) = λα + 1 − e−λα

, λ > 0, (5.6)

is Bernstein as the composition of Bernstein functions. Moreover, fα extends holomor-
phically to C \ (−∞, 0]. Since fα(λ) ∈ Σ+

π/2 for λ ∈ Σ+
π/(2α), the function fα satisfies the 

assumptions of Corollary 5.5 with θ = π ∈ (π/2, π). Hence, fα is Carasso–Kato. (Note 
2α
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that on the other hand, in view of (5.6), one may apply the composition rule (3.10) and 
Theorem 4.5 to arrive at the same conclusion.)

Let now

ψ(λ) := log(1 + λ), gα(λ) := fα(λ) · ψ(λ1−α), λ ∈ C \ (−∞, 0],

where one chooses the main branch of the logarithm. Clearly, gα is holomorphic in 
C \ (−∞, 0]. Moreover, gα is Bernstein by [32, Proposition 3.8, (vi)].

Let γ ∈ (α, 1) be fixed. Observe first that fα(λ) ∈ Σ+
π/2 for λ ∈ Σ+

πγ/(2α). On the 
other hand, from Proposition 2.2 it follows that fα(λ) ∈ Σ(π/2)γ if λ ∈ Σπγ/(2α). So, 
fα(λ) ∈ Σ+

(π/2)γ for λ ∈ Σ+
πγ/(2α). Finally, note that Im(ψ(λ)) ∈ (0, π) for λ ∈ H+ and 

ψ(λ) ∈ C+ for λ ∈ C \ (−∞, 0] such that |λ| ≥ 2. Summarizing the observations above, 
we infer that

gα(λ) ∈ C+ if λ ∈ Σ+
πγ/(2α), |λ| ≥ rα,γ ,

where

rα,γ := max
(

21/(1−α),

(
1 + π

cos(πγ/2)

)1/(1−α)
)

=
(

1 + π

cos(πγ/2)

)1/(1−α)

.

So, gα satisfies the assumptions of Corollary 5.5 with θ = πγ
2α , and then gα is Carasso–

Kato.
Note that gα /∈ CBF since it does not have a sublinear growth in Σπγ

2α
. Moreover, 

since

gα(λ) = 2λ + O(|λ|2−α), λ → 0, λ ∈ C+,

gα is not of the form u(λβ), for u ∈ BF and β ∈ (0, 1), and Theorem 4.5 is not applicable 
to gα.

Now we turn our attention to Carasso–Kato functions ψ which are, in addition, com-
plete Bernstein functions. As in the situation of Theorem 5.4, we first require ψ to map 
the generators of bounded C0-semigroups into the generators of sectorially bounded holo-
morphic C0-semigroups. Such ψ can, in fact, be characterized in an elegant way as the 
following statement shows. (It corresponds to Theorem 1.2 from Introduction.)

Theorem 5.7. Let ψ ∈ CBF and let γ ∈ (0, π/2) be fixed. The following assertions are 
equivalent.

(i) One has

ψ(C+) ⊂ Σγ .
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(ii) For each Banach space X and each generator −A of a bounded C0-semigroup on X, 
the operator −ψ(A) belongs to BH(π/2 − γ).

Proof. The implication (ii) ⇒ (i) follows from [6, Theorem 4] and its proof. So, it suffices 
to prove that (i) implies (ii).

Assume that (i) is true. We can also assume that ψ 
≡ const. Then, by Theorem 5.4
and Proposition 2.5, we obtain that if θ0 ∈ (π/2, π) is given by

| cos θ0| = cot γ
cot γ + 1

then for every θ ∈ (π/2, θ0) one has

−ψ(A) ∈ BH(ω), ω = π

2

(
1 − θ̃

θ

)
, (5.7)

where θ̃ = θ̃(θ) ∈ (0, π/2) is defined by

cot θ̃ = cot γ + 1
sin θ

(
cot γ

cot γ + 1 − | cos θ|
)
.

Since

lim
θ→π/2

θ̃(θ) = γ,

considering θ in (5.7) arbitrarily close to π/2, we obtain (ii). �
Let us recall that (5.1) is necessary for ψ ∈ BF to be a Carasso–Kato function. The 

next statement shows that if moreover ψ ∈ CBF then (5.1) is also sufficient thus providing 
a characterization of the Carasso–Kato property for complete Bernstein functions.

Corollary 5.8. Let ψ ∈ CBF . Then ψ is Carasso–Kato if and only if there exist γ ∈
(0, π/2) and β ≥ 0 such that (5.1) holds. Moreover, if (5.1) holds and if −A generates a 
bounded C0-semigroup on X, then −ψ(A) ∈ H(π/2 − γ).

Proof. It is sufficient to show that (5.1) implies that ψ is Carasso–Kato. If (5.1) is 
satisfied, then set ψβ(λ) := ψ(λ + β) and note that ψβ ∈ CBF for each β ≥ 0. By 
applying Theorem 5.7 to ψβ , we obtain that

−ψβ(A) = −ψ(β + A) ∈ BH(π/2 − γ)

for any generator −A of a bounded C0-semigroup on X. Then, using Lemma 4.6, we 
conclude that −ψ(A) generates a bounded C0-semigroup having a holomorphic extension 
to Σπ

2 −γ . �
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Appendix A

It is an open question whether for any α ∈ (0, 1),

ψ ∈ BF =⇒ [ψ(λα)]1/α ∈ BF . (A.1)

A positive answer to this question would allow one to apply the methods from [3] directly 
and to obtain Theorem 4.5 and its corollaries in a comparatively simple way. Let us 
analyze the property (A.1) in some more details.

Apart from the situation described in (4.2), it is known that (A.1) is true if α = 1/n, 
n ∈ N [3, Proposition 7.1] (see also [28, Remark 12]). The following Proposition A.2
generalizes [3, Proposition 7.1] and (4.2) in the case when α ∈ (0, 1/2] and ψ ∈ BF , 
and it extends these statements for any α ∈ (0, 1) if ψ is a so-called special Bernstein 
function. Recall that a non-zero ψ ∈ BF is said to be a special Bernstein function, if 
λ/ψ(λ) ∈ BF as well. The class of special Bernstein functions will be denoted by SBF . 
By Theorem 2.4, (iii) we have CBF ⊂ SBF .

The proof of the proposition is based on the next lemma.

Lemma A.1. Let ψ ∈ BF , and let α ∈ (0, 1). For β > 0 define

ψα,β(λ) :=
(
ψ(λα)
λα

)β

, λ > 0. (A.2)

Then ψα,β is completely monotone for all α ∈ (0, 1/2] and β > 0. If ψ ∈ SBF , then ψα,β

is completely monotone for all α ∈ (0, 1) and β > 0.

Proof. If ψ ∈ BF and α ∈ (0, 1/2], then by [32, Proposition 7.22] one has

fα(λ) := λ1−αψ(λα) ∈ CBF ,

so that λ/fα(λ) ∈ CBF and, by [32, Theorem 3.7, (ii)], for any β > 0,

ψα,β(λ) =
[
λ1−αψ(λα)

λ

]β
=

[
λ

fα(λ)

]−β

is completely monotone. Let now α ∈ (0, 1) and ψ ∈ SBF so that ψ(λ) = λ/f(λ), f ∈
BF . Since the set BF is closed under composition, f(λα) is a Bernstein function. Hence, 
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by [32, Theorem 3.7, (ii)], the function ψα,β(λ) = [f(λα)]−β is completely monotone for 
any β > 0 as the composition of completely monotone and Bernstein functions. �
Proposition A.2. Let ψ ∈ BF , and let ψα(λ) := [ψ(λα)]1/α, α ∈ (0, 1). If α ∈ (0, 1/2], 
then ψα(λ) ∈ BF . If α ∈ (0, 1) and, in addition, ψ ∈ SBF , then ψα ∈ SBF too.

Proof. For α ∈ (0, 1) and βα = 1/α− 1 consider ψα,βα
given by (A.2). By Lemma A.1, 

if ψ ∈ BF and α ∈ (0, 1/2] then ψα,βα
is completely monotone.

Observe further that

ψ′
α(λ) = ψ′(λα)ψα,βα

(λ), λ > 0. (A.3)

If ψ ∈ BF , then ψ′(λα) is completely monotone being the composition of completely 
monotone and Bernstein functions. Hence, since the product of completely monotone 
functions is completely monotone, we infer that ψ′

α is completely monotone for every 
α ∈ (0, 1/2]. Thus ψα ∈ BF .

If, in addition, α ∈ (0, 1) and ψ ∈ SBF then, by Lemma A.1, the function ψα,βα
is 

completely monotone. Hence, arguing as above, from (A.3) it follows that in this case 
ψ′
α is completely monotone, and then ψα ∈ BF . �

Example A.3. Note that (A.1) does not imply that ψ ∈ SBF . For instance, if

ψ(λ) := 1 − 1
(1 + λ)2 = λ(2 + λ)

(1 + λ)2 , λ > 0,

then ψ ∈ BF since ψ′(λ) = 2(1 + λ)−3 is completely monotone. At the same time, 
ψ /∈ SBF since (λ/ψ(λ))′ = 1 − 1/(2 + λ)2 is not completely monotone.

On the other hand, we have

ψ(λ) = λ

f1(λ)f2(λ) ,

where

f1(λ) = 1 + λ ∈ CBF , and f2(λ) = 1
2 + λ

2(2 + λ) ∈ CBF .

Thus, if α ∈ (0, 1), then

([ψ(λα)]1/α)′ = 2
(1 + λα)3 · [f1(λα)]−(1/α−1) · [f2(λα)]−(1/α−1)

is completely monotone. Indeed, fj(λα) ∈ BF , j = 1, 2, and from [32, Theorem 3.7, (ii)] it 
follows that [fj(λα)]−β , j = 1, 2, are completely monotone for β > 0. Hence ([ψ(λα)]1/α)′
is completely monotone as the product of completely monotone functions, and then 
[ψ(λα)]1/α ∈ BF .
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